Type + realization link | h-Characteristic | Realization of h | sl(2)-module decomposition of the ambient Lie algebra \(\psi=\) the fundamental \(sl(2)\)-weight. | Centralizer dimension | Type of semisimple part of centralizer, if known | The square of the length of the weight dual to h. | Dynkin index | Minimal containing regular semisimple SAs | Containing regular semisimple SAs in which the sl(2) has no centralizer |
\(A^{156}_1\) | (2, 2, 2, 2, 2, 2) | (16, 22, 30, 42, 30, 16) | \(V_{22\psi}+V_{16\psi}+V_{14\psi}+V_{10\psi}+V_{8\psi}+V_{2\psi}\)
| 0 | \(\displaystyle 0\) | 312 | 156 | E^{1}_6; | E^{1}_6; |
\(A^{84}_1\) | (2, 2, 2, 0, 2, 2) | (12, 16, 22, 30, 22, 12) | \(V_{16\psi}+V_{14\psi}+2V_{10\psi}+V_{8\psi}+V_{6\psi}+V_{4\psi}+V_{2\psi}\)
| 0 | \(\displaystyle 0\) | 168 | 84 | E^{1}_6; | E^{1}_6; |
\(A^{60}_1\) | (2, 2, 0, 2, 0, 2) | (10, 14, 18, 26, 18, 10) | \(V_{14\psi}+3V_{10\psi}+V_{8\psi}+V_{6\psi}+2V_{4\psi}+V_{2\psi}+V_{0}\)
| 1 | \(\displaystyle 0\) | 120 | 60 | D^{1}_5; | D^{1}_5; |
\(A^{36}_1\) | (2, 0, 0, 2, 0, 2) | (8, 10, 14, 20, 14, 8) | \(2V_{10\psi}+2V_{8\psi}+2V_{6\psi}+3V_{4\psi}+3V_{2\psi}\)
| 0 | \(\displaystyle 0\) | 72 | 36 | E^{1}_6; A^{1}_5+A^{1}_1; | E^{1}_6; A^{1}_5+A^{1}_1; |
\(A^{35}_1\) | (2, 1, 1, 0, 1, 2) | (8, 10, 14, 19, 14, 8) | \(V_{10\psi}+2V_{9\psi}+V_{8\psi}+V_{6\psi}+2V_{5\psi}+V_{4\psi}+2V_{3\psi}+V_{2\psi}+3V_{0}\)
| 3 | \(\displaystyle A^{1}_1\) | 70 | 35 | A^{1}_5; | A^{1}_5; |
\(A^{30}_1\) | (1, 2, 1, 0, 1, 1) | (7, 10, 13, 18, 13, 7) | \(V_{10\psi}+V_{8\psi}+2V_{7\psi}+2V_{6\psi}+2V_{5\psi}+V_{4\psi}+2V_{2\psi}+2V_{\psi}+V_{0}\)
| 1 | \(\displaystyle 0\) | 60 | 30 | D^{1}_5; | D^{1}_5; |
\(A^{28}_1\) | (0, 2, 0, 2, 0, 0) | (6, 10, 12, 18, 12, 6) | \(V_{10\psi}+8V_{6\psi}+V_{2\psi}+8V_{0}\)
| 8 | not computed | 56 | 28 | D^{1}_4; | D^{1}_4; |
\(A^{21}_1\) | (1, 1, 1, 0, 1, 1) | (6, 8, 11, 15, 11, 6) | \(V_{8\psi}+2V_{7\psi}+V_{6\psi}+2V_{5\psi}+3V_{4\psi}+2V_{3\psi}+2V_{2\psi}+2V_{\psi}+V_{0}\)
| 1 | \(\displaystyle 0\) | 42 | 21 | A^{1}_4+A^{1}_1; | A^{1}_4+A^{1}_1; |
\(A^{20}_1\) | (2, 2, 0, 0, 0, 2) | (6, 8, 10, 14, 10, 6) | \(V_{8\psi}+5V_{6\psi}+3V_{4\psi}+5V_{2\psi}+4V_{0}\)
| 4 | \(\displaystyle A^{1}_1\) | 40 | 20 | A^{1}_4; | A^{1}_4; |
\(A^{12}_1\) | (0, 0, 0, 2, 0, 0) | (4, 6, 8, 12, 8, 4) | \(2V_{6\psi}+7V_{4\psi}+9V_{2\psi}+2V_{0}\)
| 2 | \(\displaystyle 0\) | 24 | 12 | 3A^{1}_2; A^{1}_3+2A^{1}_1; D^{1}_4; | 3A^{1}_2; A^{1}_3+2A^{1}_1; D^{1}_4; |
\(A^{11}_1\) | (0, 1, 1, 0, 1, 0) | (4, 6, 8, 11, 8, 4) | \(V_{6\psi}+2V_{5\psi}+3V_{4\psi}+6V_{3\psi}+4V_{2\psi}+2V_{\psi}+4V_{0}\)
| 4 | \(\displaystyle A^{1}_1\) | 22 | 11 | A^{1}_3+A^{1}_1; | A^{1}_3+A^{1}_1; |
\(A^{10}_1\) | (1, 2, 0, 0, 0, 1) | (4, 6, 7, 10, 7, 4) | \(V_{6\psi}+5V_{4\psi}+8V_{3\psi}+V_{2\psi}+11V_{0}\)
| 11 | not computed | 20 | 10 | A^{1}_3; | A^{1}_3; |
\(A^{9}_1\) | (1, 0, 0, 1, 0, 1) | (4, 5, 7, 10, 7, 4) | \(2V_{5\psi}+4V_{4\psi}+4V_{3\psi}+5V_{2\psi}+6V_{\psi}+3V_{0}\)
| 3 | not computed | 18 | 9 | 2A^{1}_2+A^{1}_1; | 2A^{1}_2+A^{1}_1; |
\(A^{8}_1\) | (2, 0, 0, 0, 0, 2) | (4, 4, 6, 8, 6, 4) | \(8V_{4\psi}+8V_{2\psi}+14V_{0}\)
| 14 | not computed | 16 | 8 | 2A^{1}_2; | 2A^{1}_2; |
\(A^{6}_1\) | (0, 0, 1, 0, 1, 0) | (3, 4, 6, 8, 6, 3) | \(3V_{4\psi}+4V_{3\psi}+9V_{2\psi}+8V_{\psi}+4V_{0}\)
| 4 | not computed | 12 | 6 | A^{1}_2+2A^{1}_1; | A^{1}_2+2A^{1}_1; |
\(A^{5}_1\) | (1, 1, 0, 0, 0, 1) | (3, 4, 5, 7, 5, 3) | \(V_{4\psi}+6V_{3\psi}+8V_{2\psi}+8V_{\psi}+9V_{0}\)
| 9 | \(\displaystyle A^{1}_2\) | 10 | 5 | A^{1}_2+A^{1}_1; | A^{1}_2+A^{1}_1; |
\(A^{4}_1\) | (0, 2, 0, 0, 0, 0) | (2, 4, 4, 6, 4, 2) | \(V_{4\psi}+19V_{2\psi}+16V_{0}\)
| 16 | \(\displaystyle 2A^{1}_2\) | 8 | 4 | 4A^{1}_1; A^{1}_2; | 4A^{1}_1; A^{1}_2; |
\(A^{3}_1\) | (0, 0, 0, 1, 0, 0) | (2, 3, 4, 6, 4, 2) | \(2V_{3\psi}+9V_{2\psi}+16V_{\psi}+11V_{0}\)
| 11 | not computed | 6 | 3 | 3A^{1}_1; | 3A^{1}_1; |
\(A^{2}_1\) | (1, 0, 0, 0, 0, 1) | (2, 2, 3, 4, 3, 2) | \(8V_{2\psi}+16V_{\psi}+22V_{0}\)
| 22 | not computed | 4 | 2 | 2A^{1}_1; | 2A^{1}_1; |
\(A^{1}_1\) | (0, 1, 0, 0, 0, 0) | (1, 2, 2, 3, 2, 1) | \(V_{2\psi}+20V_{\psi}+35V_{0}\)
| 35 | \(\displaystyle A^{1}_5\) | 2 | 1 | A^{1}_1; | A^{1}_1; |